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Number of Candidates in Cryptographic Contests 

Initial number 
of candidates 

15 
 
 

34 
 
 

51 
 
 

57 

AES 
 
 
eSTREAM 
 
 
SHA-3 
 
 
CAESAR 

Implemented 
in hardware 

5 
 
 

8 
 
 

14 
 
 

28 

Percentage 

33.3% 
 
 

23.5% 
 
 

27.5% 
 
 

49.1% 
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Pros: 
•  Distribution of effort 
•  Larger talent pool 
•  Potential for design space exploration  

Cons: 
•  Different skills of designers 
•  Different amount of time and effort 
•  Misunderstandings regarding API and optimization target 
•  Requests for extending the deadline or disregarding ALL results 

Pros & Cons of Multiple Designers 
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Potential Solution: High-Level Synthesis (HLS) 

High Level Language 
(preferably C or C++) 

Hardware Description Language 
(VHDL or Verilog) 

High-Level 
Synthesis 
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•  Each submission includes reference implementation in C 
•  Development time potentially decreased 3-10 times 
•  All candidates can be implemented by the same  

group, and even the same designer 
•  Results from High-Level Synthesis could have a large impact 

in early stages of the competitions and help narrow down the 
search 

•  RTL code and results from previous contests form 
excellent benchmarks for High-Level Synthesis tools, 
which can generate fast progress targeting  
cryptographic applications 

 

Case for High-Level Synthesis & Crypto 
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BEFORE: Early feedback for designers of algorithms 
•  Typical design process based only on security analysis and 

software benchmarking 
•  Lack of immediate feedback on hardware performance 
•  Common unpleasant surprises, e.g.,  

§  Mars in the AES Contest 
§  BMW, ECHO, and SIMD in the SHA-3 Contest 

DURING: Faster design space exploration 
•  Multiple hardware architectures (folded, unrolled, pipelined, etc.) 
•  Multiple variants of the same algorithms (e.g., key, nonce, tag size) 
•  Detecting suboptimal manual designs 

Potential Additional Benefits 
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•  How can we trust these tools? 

•  Isn’t manual design always better? 

•  Is it fair to compare manual designs with HLS designs? 

•  Won’t the number of candidates saturate soon anyway? 

Typical Doubts (from reviewers of our papers) 
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•  How can we trust these tools? 

•  Isn’t manual design always better? 

•  Is it fair to compare manual designs with HLS designs? 

•  Won’t the number of candidates saturate soon anyway? 

•  Why did not you implement Serpent? 

    (the same reviewer at two major crypto conferences) 

Typical Doubts (from reviewers of our papers) 
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“A Survey and Evaluation of FPGA  
High-Level Synthesis Tools” 

IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems ( Volume: 35, Issue: 10, Oct. 2016 ) 

Razvan Nane, Vlad-Mihai Sima, Koen Bertels:  
Delft University of Technology, The Netherlands 
Christian Pilato, Fabrizio Ferrandi:  
Politecnico di Milano, Italy 
Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen, 
Hsuan Hsiao, Stephen Brown, Jason Anderson: 
University of Toronto, Canada 

High-Level Synthesis: State of the Art 
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Number of Tools 

C, C++, or  
Extended C 

Other 
Languages 

In Use 14 3 

Abandoned 7 4 

Status 
Unknown 

5 0 

Total 26 7 
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Number of Tools supporting C, C++, Extended C 

Commercial Academic 

In Use 10 4 

Abandoned 1 (C2H) 6 

Status 
Unknown 

1 4 

Total 12 14 
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In-Use Tools supporting C, C++, Extended C 

Commercial:  

Academic:  
•  Bambu:   Politecnico di Milano, Italy 
•  DWARV:  Delft University of Technology, The Netherlands 
•  GAUT:    Universite de Bretagne-Sud, France 
•  LegUp:    University of Toronto, Canada 

•  CHC: Altium; CoDeveloper: Impulse Accelerated; 
Cynthesizer: FORTE; eXCite: Y Explorations;  
ROCCC: Jacquard Comp. 

•  Catapult-C: Calypto Design Systems; CtoS: Cadence; 
DK Design Suite: Mentor Graphics; Synphony C: Synopsys 

•  Vivado HLS: Xilinx 
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Crypto-related Benchmarks (C programs) 

CHStone Benchmark Program Suite for  
Practical C-based High-Level Synthesis 

http://www.ertl.jp/chstone/ 
aes-encrypt: 

 Key scheduling + Encryption of 1 128-bit block 
aes-decrypt: 

 Key scheduling + Decryption of 1 128-bit block 
sha: 

 Hashing of 256 512-bit blocks using SHA-1 
blowfish: 

 Key scheduling + Encryption of 650 64-bit blocks  
      in CFB64 mode 
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Benchmarking Results in Number of Clock Cycles 
Before Optimization 
Tools aes-

encrypt 
aes-

decrypt 
sha blowfish 

Bambu 1,574 2,766 111,762 57,590 

DWARV 5,135 2,579 71,163 70,200 

LegUp 1,564 7,367 168,886 75,010 

Commercial 3,976 5,461 197,867 101,010 

Manual 20 20 20,480 18,736 

Best/Manual 78 129 3.5 3.1 
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Benchmarking Results in Number of Clock Cycles 
After Optimization 
Tools aes-

encrypt 
aes-

decrypt 
sha blowfish 

Bambu 1,485 2,585 51,399 57,590 

DWARV 3,282 2,579 71,163 70,200 

LegUp 1,191 4,847 81,786 64,480 

Commercial 3,735 3,923 124,339 96,460 

Manual 20 20 20,480 18,736 

Best/Manual 60 129 2.5 3.1 
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•  Integrated into the primary Xilinx toolset, Vivado, and 
released in 2012 

•  Free (or almost free) licenses for academic institutions 
•  Good documentation and user support 
•  The largest number of performance optimizations 

•  8 out of 8: Operation Chaining, Bitwidth Analysis and 
Optimization, Memory Space Allocation, Loop Optimizations,  
Hardware Resource library, Speculation and Code Motion, 
If-Conversion [Bambu, LegUp: 6 out of 8, DWARV: 5 out of 8] 

•  On average the highest clock frequency of the generated 
code 

 
 

Our Choice of the HLS Tool: Vivado HLS 
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1.  Results cannot be compared with results 
obtained using other HLS tools 

2.  Designers are not allowed to target ASICs 

3.  Designers are not allowed to target devices of  
other FPGA vendors (e.g., Altera) 

 

Licensing Limitations of Vivado HLS 
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AES-128-ECB-ENC (Spartan 6):  
ReConFig (Reconfigurable Computing and FPGAs), Dec. 2014 
 

HLS/RTL ratios: 
•  Clock cycles:               12/10  = 1.2 
•  Area:       343/354  = 0.97 
 

RTL/HLS ratios: 
•  Frequency:       230/231 = 0.996 
•  Throughput:       2943/2467 = 1.19 
•  Throughput/Area:            8.31/7.19 = 1.16 

GMU (Ice’s) Previous Efforts (1) 
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5 Final SHA-3 Candidates & SHA-2 (Virtex 6):  
ARC (Applied ReConfigurable Computing, Apr. 2015 

GMU (Ice’s) Previous Efforts (2) 

RTL HLS 
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•  Ranking of candidates in cryptographic contests  
in terms of their performance in modern FPGAs 
will remain the same independently whether the HDL 
implementations are developed manually or  
generated automatically using High-Level Synthesis tools 

•  The development time will be reduced by a factor of 3 to 10 
•  This hypothesis should apply to at least 

•  AES Contest, SHA-3 Contest, CAESAR Contest 
•  possibly Post-quantum Cryptography? 

Our Hypotheses 
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1.  Why not other HLS tools ? 

2.  Why not ASICs ? 

3.  Why not other FPGA vendors (e.g., Altera)? 

4.  Why no previous work by other teams? 

5.  Why another publication? 

 

 

18 months of unsuccessful publishing attempts 
and unread/ignored rebuttals 
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1.  Why not other HLS tools ? 

2.  Why not ASICs ? 

3.  Why not other FPGA vendors (e.g., Altera)? 

4.  Why no previous work by other teams? 

5.  Why another publication? 

6.  Why not Serpent? 

 

 

18 months of unsuccessful publishing attempts 
and unread/ignored rebuttals 



24 

•  CAESAR HW API 1.0 (02/2016) vs. GMU API 1.1 (09/2015) 

•  Comparison vs. RTL implementations developed  
by other groups 

•  New candidates (e.g., MORUS, AEGIS, NORX, SILC) 

•  Block-based => stream-based implementation 

•  Easily adjustable algorithm-dependent port widths 

•  C++ testbench independent of hardware architecture 

•  Automated generation of test vectors at the  
CipherCore (C++) level 

 

 

DIAC 2016 vs. DIAC 2015 
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Manual 
Design 

HDL	Code	

Netlist	

Post	
Place	&	Route	

Results	

Functional  
Verification 

Timing  
Verification 

Informal	Specifica)on	 Test	Vectors	

Traditional Register-Transfer Level (RTL)  
Development & Benchmarking Flow 

Xilinx ISE + ATHENa 
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High-Level Synthesis 

HDL	Code	

Netlist	

Post	
Place	&	Route	

Results	

Functional  
Verification 

Timing  
Verification 

Reference	Implementa)on	in	C	

Test	Vectors	

Manual Modifications 
(pragmas, tweaks) 

HLS-ready	C	code	

Proposed HLS-Based  
Development and Benchmarking Flow 

Xilinx ISE + ATHENa 
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Language Partitioning 
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Mapping Hardware to Software Interface 

Basic handshaking signals (valid, ready) added automatically  

C++ 
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Easily Adjustable Port Widths 



30 

Reference C vs. HLS-ready C/C++ 

Data Reference C HLS-ready C/C++ 
Access Random 

Data can be accessed at 
any location multiple 
times 

Serial 
Previously accessed data 
must be maintained 
inside of the code if 
required 

Width Byte/Word Block size 

Total Size Known Unknown 

Status Always available Availability unknown  
until the time of read 
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Reference C vs. HLS-ready C/C++ 

Reference C 

HLS-ready C/C++ 

Encryption Decryption 

Encryption/ 
Decryption 

Use of pragmas possible but unreliable 



32 

Low-Level Code Rewriting 

Single vs. Multiple Function Calls: 
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Adding Pragmas 

for (i = 0; i < 4; i ++)  
#pragma HLS UNROLL 
     for (j = 0; j < 4; j ++)  
#pragma HLS UNROLL 
         b[i][j] = s[i][j]; 

Unrolling of loops: 

Change array shapes: 

void KeyUpdate (word8 k[4][4],  
                word8 round)  
{  
 #pragma HLS INLINE 

  ... 
} 

Flattening function's hierarchy: 

void AES_encrypt (word8 a[4][4], word8 k[4][4], word8 b[4][4])  
{ 
#pragma HLS ARRAY_RESHAPE variable=a[0] complete dim=1 reshape 
#pragma HLS ARRAY_RESHAPE variable=a[1] complete dim=1 reshape 
#pragma HLS ARRAY_RESHAPE variable=a[2] complete dim=1 reshape 
#pragma HLS ARRAY_RESHAPE variable=a[3] complete dim=1 reshape 
#pragma HLS ARRAY_RESHAPE variable=a complete dim =1 reshape  
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HLS-Ready C/C++ Code Generation 

Phase I 

1.  Step-by-step designer’s guide (under development) 
•  Code rewriting 
•  Pragmas insertion 

2.  Multiple examples (AES, SHA-3, CAESAR contests) 

Phase II 

1.  Automated insertion of pragmas for Vivado HLS 

2.  Translation of Vivado HLS pragmas to pragmas for 
academic tools: Bambu, DWARV, LegUp 
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Sources of Productivity Gains 

•  Higher-level of abstraction 
•  Focus on datapath rather than control logic 
•  Debugging in software (C/C++) 

•  Faster run time 
•  No timing waveforms 
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Verification Framework 

 

 

 

 

CipherCore  
Testbench 



Tenta)ve	
Results	

	
Post-Round	2	RTL,	

First	Time	with	CAESAR	API		
and	RTL	designers	from	mul)ple	groups	
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RTL vs. HLS Throughput [Mbits/s] 

                   

                   
Different hardware  
architectures 
in HLS vs. RTL 
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RTL vs. HLS Ratios for Throughput in Virtex 6 

Suboptimal HLS 

Sub- 
optimal  

RTL 

> 1.30 < 0.70 
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RTL vs. HLS Area [LUTs] 

Different hardware  
architectures 
in HLS vs. RTL 

Small difference  
in RTL 
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RTL vs. HLS Ratios for Area in Virtex 6 
Sub- 

optimal  
RTL 

Sub- 
optimal  

HLS 

> 1.30 < 0.70 
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RTL vs. HLS Throughput/Area [(Mbits/s)/LUTs] 

Different hardware  
architectures 
in HLS vs. RTL 
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RTL vs. HLS Ratios for Throughput/Area in Virtex 6 

Suboptimal  
HLS 

Sub- 
optimal  

RTL 

> 1.30 

< 0.70 

(0.70, 0.90] 

RTL 
may be 

improved 

[0.90, 1.30] 
RTL and HLS 
acceptable 
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Identifying suboptimal RTL implementations in Round 3 
of the CAESAR Contest 
 
Designing new building blocks [e.g., rounds, steps, etc.] for 
hardware-friendly block ciphers, hash functions, and 
authenticated ciphers 
 
Post-Quantum Cryptography 
 
Early Rounds of Future Contests 

Possible Future Uses of HLS 
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•  Suboptimal control unit of HLS implementations 
#cycles per block ≥ #rounds + 2   

•  Wide range of RTL to HLS performance metric ratios 
Wide range of RTL designer skills and selected architectures 

•  A few potentially suboptimal HLS or RTL implementations 

•  Dependence of results on particular FPGA family 

•  Efficient and reliable generation of HLS-ready C/C++ code 

•  Portability among HLS tools 

•  Licensing limitations of commercial tools 

Remaining Difficulties 
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HLS vs. RTL Ratios for Number of Clock Cycles 
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Best HLS/RTL reported so far 

Tools aes-
encrypt 

aes-
decrypt 

sha blowfish 

Best/Manual 60 129 2.5 3.1 

• “A Survey and Evaluation of FPGA  
High-Level Synthesis Tools” 

• IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems ( Volume: 35, Issue: 10, Oct. 2016 ) 

•  12 leading researchers in the HLS field 
•  Co-developers of top 3 academic HLS Tools 
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•  How can we trust these tools? 
If HLS used efficiently, maximum 20% penalty  
in the number of clock cycles per block.  
Easy to verify by comparing vs. the number of rounds. 

•  Isn’t manual design always better? 
Multiple HLS designs with one or more metrics better. 
7 out of 19 HLS designs with better Throughput/Area. 

•  Is it fair to compare manual designs with HLS designs? 
It is not our intention. HLS results are supposed  
to be compared with HLS only. However if an  
existing RTL result worse, it is OK to use HLS result 
temporarily. 

Typical Doubts (from reviewers of our papers) 



Ekawat Homsirikamol 
a.k.a “Ice” 

•  Main developer of the RTL Round 2  
Benchmarking Framework and  
Developer’s Package 

•  RTL Designer for 12 Round 2  
Candidates: AES-GCM, AEZ, 
Ascon, Deoxys, HS1-SIV, ICEPOLE,  
Joltik, NORX, OCB, PAEQ,  
Pi-Cipher, STRIBOB 

•  Developer of the HLS-based  
methodology and framework 
for crypto applications 



Comments? 

Thank you! 
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Questions? 

Suggestions? 
ATHENa:  http:/cryptography.gmu.edu/athena  

CERG: http://cryptography.gmu.edu 


