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Abstract 

The NIST competition for developing the new cryptographic hash algorithm SHA-3 has entered its 
third round. One evaluation criterion is the ability of the candidate algorithm to be implemented on 
resource-constrained platforms. This includes FPGAs for embedded and hand-held devices. In this paper 
we present two sets of lightweight implementations of all SHA-3 finalists and SHA-2, one using only logic 
resources (slices) and one which additionally uses one Block RAM. All implementations were designed 
to achieve maximum throughput while adhering to an area constraint of 800 slices or 400-600 slices 
and one Block RAM, respectively, on Xilinx Spartan-3 devices. We also synthesized them for Virtex-5, 
Altera Cyclone-II, and the new Xilinx Spartan-6 and Virtex-6 devices to examine the influence of device 
choice and to allow for comparison with other reported results. Furthermore, we measured the power 
consumption of all implementations on Spartan-3 to evaluate the efficiency of the algorithms. 

Introduction and Motivation 

The National Institute of Standards and Technology (NIST) started a public competition to develop a new 
cryptographic hash algorithm in November 2007. From the submitted 64 entries only 14 were selected for 
the second round of the competition and in December 2010, the 5 Secure Hash Algorithm-3 (SHA-3) finalists 
were announced. NIST is expected to announce the winner in 2012. One important criterion that the hash 
algorithm should fulfill in order to become the next American hash standard SHA-3 is its ability to be “[. . . ] 
implemented securely and efficiently on a wide variety of platforms, including constrained environments, 
such as smart cards”[1]. Unfortunately, designing low-area implementations is not as straightforward as 
optimizing a design for best throughput over area. One has to go beyond merely reducing the datapath 
width and carefully evaluate the trade-off speed vs. area at every step of the design process. The control 
unit is an additional hurdle. Extensive component re-use in the datapath can lead to a very complex control 
logic which might negate the area savings in the datapath. 

There have been several publications that show low-area implementations of single SHA-3 candidates on 
FPGAs such as BLAKE [2], Grøstl [3], Keccak [4], and Skein [5][6]. Unfortunately, they are implemented 
on different FPGAs from different vendors and with different target sizes. The first publication that covers 
implementations of all SHA-3 finalists is [7] followed by [8] and [9]. The later publication is from the same 
research group as this paper and also covers 13 SHA-3 round 2 candidates. Kerckhof et al. [7] implemented 
256-bit digest versions of all SHA-3 finalists on Virtex-6 devices. Their optimization goal was to achieve 
maximum throughput over area ratio within a few hundred slices using a 64-bit datapath. Junkg et al. [8] 
developed area-optimized implementations of 256-bit digest versions of all SHA-3 finalists on Virtex-5 devices. 
While both papers contribute greatly to the state-of-the art in low area implementations of hash functions 
through introducing new and innovative design techniques, they do not lend themselves well to obtaining 
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a fair ranking of algorithms. In [7] the area consumption of the algorithms varies up to 2.2 times and the 
resulting throughput 7.8 times with the smallest implementation having the worst throughput and the largest 
the highest throughput. The variations in [8] with 2.7 for area and 42.4 for speed are even larger. We believe 
that only if one criterion is fixed (e.g. area or throughput) a fair comparison can be made. 

In [9] we fixed the area to around 500 slices and 1 Block RAM and asked the question: “Given an area 
budget, what is the fastest algorithm”. In this paper we expanded upon our previous work by introducing 
an improved datapath for JH and adding new implementations of all SHA-3 finalists designed for a new area 
requirement that does not use Block RAMs but only logic resources (slices). This allows for an interesting 
analysis on the impact of using Block RAMs and for fair comparison with reported results of other groups 
who do not use Block RAMs either. Furthermore, we implemented SHA-2 for both area requirements to 
examine which SHA-3 candidates can outperform SHA-2. A very important metric for implementations 
on embedded devices is the power consumption. Westermann et al.[10] measured and compared the power 
consumption of all round 2 candidates on a personal computer. However, to the authors knowledge there 
have not been any power/energy consumption results reported of the SHA-3 candidates on FPGAs. We 
measured the average and maximum power consumption of our implementations, and ranked the algorithms 
based upon the energy needed to hash a message per bit of message. 

The remainder of the paper is organized as follows. In Sect. 2 we present the design methodology we 
used including clear assumptions and goals, the power measurement technique and performance metrics. We 
describe the datapaths of the five SHA-3 finalists and SHA-2 in detail in Sect. 3. Section 4 shows the results 
of our implementations and compares them amongst each other and with implementations of [7] and [8]. 

2 Methodology 

The primary target for our lightweight implementations are the low-cost Xilinx Spartan-3 FPGAs. We 
choose VHDL to describe our lightweight architectures. All implementations were designed at a low level 
for our main target FPGA family such that we can already obtain a rather precise estimate of the required 
area from detailed datapath diagrams. This approach allowed us to enforce a similar coding style across 
several designers and algorithms. Furthermore, we built a small VHDL library of elementary functions that 
was used by all designers. 

2.1 Assumptions and Goals 

Only SHA-3 variants with 256-bit digest have been implemented as these are the most likely variants to 
be used in area-constrained designs. Furthermore, we assume that padding is done in software. This as­
sumption goes hand-in-hand with the application of hash functions to SOC designs. The salt values of 
all SHA-3 candidates who support them are set to zero. Typical optimization goals for hardware imple­
mentations are: maximum throughput, maximum throughput to area ratio, and minimum area. In order 
to compare lightweight implementations the minimum area target seems logical. However, optimizing the 
implementations for minimum area would yield a ranking of algorithms solely based on area, i.e. we would 
know which is the smallest and which is the largest irrespective of the throughput that is achieved by these 
implementations. This information is of not much use in practice. A different approach is to optimize for 
throughput given an area constraint. We believe that this is a much more realistic scenario. Additionally 
this optimization goal lets us determine how efficient an algorithm is in a constrained environment which 
is a factor of an algorithm’s flexibility. This is a clearly stated evaluation criterion by NIST [1]. Resource 
consumption of an FPGA is characterized by the number of logic resources (slices for Xilinx, LEs for Altera), 
Block RAMs, and Multipliers consumed. In this paper we choose to explore two area targets, one using only 
logic resources of up to 768 slices, which is equivalent to the smallest Xilinx Spartan-3 device (xc3s50pq) and 
one using between 450 to 650 slices and 1 Block RAM on Xilinx Spartan-3 FPGAs. The size of the ranges 
was chosen based on our previous low-area implementation results. Within these area constraints we try to 
achieve maximum throughput. Therefore, our final comparisons will be in terms of the ratio of throughput 
to area. 
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2.2 Tools and Result Generation 
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Even though all designs were targeted for Spartan-3 devices it is interesting to see how our implementations 
perform on low-cost devices from another vendor such as Altera Cyclone-II, high speed devices such as Xilinx 
Virtex-5, and on newer devices such as Spartan-6 and Virtex-6. All results will published in the ATHENa 
results database [11]. All designs were implemented using the vendor tools: Xilinx ISE 13.1 Web Pack and 
Altera Quartus II v. 10.0 Web Edition, and verified after place-and-route against known answer test files 
provided by the submissions packet of each hash function. All results were generated using the open source 
benchmarking tool ATHENa (Automated Tool for Hardware EvaluatioN) [12]. Other than simplifying the 
result generation, ATHENa also varies the vendor tool parameters to achieve optimal results. 

2.3 Interface and Protocol 

We based our hardware interface and I/O protocol on the one we used in [9] which has its origins in [13] and 
was updated in [14]. The SHA Core assumes that its inputs and outputs are connected to FIFOs. 

2.4 Power Measurement Methodology 

In order to measure the power consumption of a hash function on an FPGA, we have to build a separate 
circuit that supplies it with test vectors and checks the results. We call this separate circuit the Wrapper 
as it envelopes the hash circuit. The Wrapper and the SHA Core are connected via the FIFO interfaces 
mentioned in Sect. 2.3 as shown in Fig. 1. We implemented the Wrapper on a Nexys-2 board and the SHA 
Core on a Spartan-3E Starter Board. Both boards are connected via a a bridge connector which is wired 
for all FIFO signals, clock, reset and ground. Each board has its own power supply, hence we are able to 
measure the power consumption of the SHA Core independently of the Wrapper. Observing the signals of 
the FIFO interfaces allows the Wrapper to identify which phase the SHA Core is(Idle, Loading a block, 
Processing a block, Writing a hash value) and generate a trigger signal accordingly. 

Figure 1: Power Measurement Setup 

A Xilinx Spartan-3 FPGA uses three supply voltages: VCore, VAux, and VOut. The supplies VAux and 
VOut are used for I/O, clock managers, JTAG, etc. All internal logic functions of the FPGA are powered by 
VCore. Even though measuring the power supplied through VAux and VOut would be needed for a full power 
profile, we expect that there will not be a significant difference in these power consumptions as neither of 
our implementations uses any internal feature of the FPGA powered by them other than I/O. As we test 
all cores with the same messages and receiving equal length digests, the power consumed due to I/O signals 
should be very similar. Hence, we only measure the power consumed from VCore. 

The power consumption consists of a static and a dynamic part: PT otal = PStatic + PDynamic. PStatic is 
constant while PDynamic is proportional to the clock speed. In order to estimate the power consumption for 
a different clock speed than the one we use for measurement, it is important to know both. We obtain PStatic 

by measuring ICore drawn from the VCore supply when neither clock nor any input values are applied. Once 
we apply a clock of 50 MHz we record ICore during the Loading, Processing, and Writing phases, identify 
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the maximum and calculate the average value to obtain PT otal = VCore · ICore which allows us to calculate 
PDynamic. The circuit we use to measure ICore is shown in Fig. 2. 
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Figure 2: Power Measurement Circuit 

2.5 Area Minimization Techniques 

Datapath: The most straightforward approach to reducing the area of the datapath is folding. Vertical 
folding reduces the datapath width while horizontal folding reduces the size of processing elements while 
maintaining the datapath width. How many times and in which direction a design can be folded depends 
on the algorithm. The extent to which folding can be applied to the SHA-3 candidates and how much it 
affects their throughput and throughput over area ratio has been examined by Homsirikamol et al. [15]. They 
show that only BLAKE can reach our area constraints through folding alone, Grøstl remains too large, JH 
area increases when folded, and Keccak as well as Skein cannot be folded at all and hence far exceed our 
area constraints. Another technique is reusing of processing elements. We heavily use this technique and 
additionally, we apply vertical folding at multiple levels down to single processing elements, not just the 
datapath as a whole as done in [15]. For example the Skein algorithm uses 4 Mix functions each using a 
64-bit adder and a 64-bit XOR. We fold the 4 Mix functions into 1 and within the Mix function we reuse 
a 32-bit adder to perform 64-bit additions. The same adder is also reused for the key injections. Both 
folding and reuse of processing elements minimize the area consumption at the cost of an increased number 
of clock cycles. We reduced this increase to some extent by interleaving operations through pipelining. In 
some of the algorithms like SHA-2, straight forward application of pipelining techniques is not trivial due to 
data dependency. So an optimization technique called quasi-pipelining is applied to reduce the critical time. 
These technique rearranges order of operations along with introduction of pipeline registers which optimizes 
the critical path along with reduction in latency. 

Logic Resources: In Xilinx Spartan-3 FPGA devices, there are two types of slices SLICELs and SLICEMs. 
SLICELs has LUTs which can configured only for logic implementation. But SLICEM LUTs can be config­
ured either as memory or logic. In memory mode, SLICEM LUTs can be configured either as 1x16 DRAM 
called RAM16 or 16-bit shift register called SLR16. The RAM16s can be configured as single-port or dual-
port memory units. The dual-port DRAM is not a true dual-port as only one port can be used as read/write 
port while the other as read only port. 

Block RAM: Block RAMs (BRAMs) offer a large amount of memory space for storage but have a limited 
number of ports and I/O lines. Xilinx Spartan-3 BRAMs can be configured as single or dual port memories 
with a maximum data width of 64 bits or 32 bits per port, respectively. Each port is associated with a 
single address input. This limits the number of independent values and the number of bits that can be 
accessed in a single clock cycle. Our Grøstl design processes four 8-bit values in each clock cycle. Even 
though these are only 32 bits, a dual port BRAM does not allow reading of four independent values in 
one clock cycle. Hence, we store that data in 4 Distributed RAMs. The Spartan-3 BRAM data sheet 
specifies that data is written to the address applied in the current clock cycle, but read from the address 
of the previous clock cycle. Hence, computing Mem[i] = Mem[i] + k, where each element is a 64-bit 
word, requires 2 clock cycles per address location i, i.e. dedicated write cycles. These are not needed when 
computing Mem[i + i] = Mem[i] + k, i.e. when an address shift is acceptable. In our early Keccak design, 
this address shift increased the complexity of the control logic and with it the area consumption beyond our 
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constraint. Hence it now uses dedicated write cycles. The new Xilinx Spartan-6 and Virtex-6 devices allow 
for independent read and write addresses for 64-bit data width. 

Control Logic: The control logic of our implementations consists of a main finite state machine (FSM) 
with up-to 8 states, a single counter to count the clock cycles per state, and ROM-based FSMs for each state 
of the main FSM. ROM-based FSMs are more efficient in terms of area consumption and speed compared to 
conventional FSM [16], [17], [18], and their maximum frequency is independent of the complexity. However 
they are more complex to design. The area required to implement ROM-based FSMs is determined by the 
number of control signals and states. In order to reduce the number of control signals we try to use bits from 
the counter output, the main finite state machine, and simple boolean logic combinations thereof wherever 
possible. Furthermore, short sequences of control signals are placed in sub-controllers. The complexity of 
address generation for BRAMs can be reduced by placing datasets in memory locations starting at addresses 
which are a power of 2. 

2.6 Performance Metrics 

The number of clock cycles needed to hash N message blocks using our implementations can be computed 
as the sum of the number of clock cycles needed for the initial steps before processing can begin st, loading 
and processing one block of data l + p, and finalization and output of the hash value end. 

clk = st + (l + p) · N + end (1) 

Throughput is defined as the number of input bits processed per unit of time. The precise formula for 
throughput of a hash function is dependent on the number of message blocks N to be hashed, the block size 
b of the algorithm, the number of clock cycles needed to hash the message clk and the clock period T . We 
can derive the formula to compute the throughput from (1). 

b · N b · N 
throughput(N) = = (2)

clk · T (st + (l + p) · N + end) · T 

For short messages we assume a message of 1 byte length which after padding is one block long for for all 
finalists and SHA-2 with the exception of JH. The minimum length of a padded JH message is 2 blocks. 

When computing the throughput for very long messages, we can neglect st and end as their influence on 
the result goes to zero. This leads to the simplified equation (3). 

b 
throughputlong = (3)

(l + p) · T 

Resource Utilization of FPGAs is very difficult to define. All FPGAs contain configurable logic elements 
which contain flip-flops (Xilinx: slices, Altera: LE), BRAMs, multipliers and other resources. These resources 
have different features not only depending on the vendor but even on the FPGA family. Hence, we can 
compare implementations using the metric of throughput over area ratio only within a specific FPGA family 
and provided they use the same number of dedicated resources. As area in this formula we use solely slices 
for Xilinx and LEs for Altera devices as there is no direct mapping from BRAM utilization to slice or LE. 

With respect to efficiency we consider two metrics: power consumption and energy per bit. The first is of 
interest for applications where only a limited amount of power is available and it is dependent on the clock 
frequency 1/T as shown (4) where PStatic and VCore depend on the FPGA, not the implementation, and a 
(average switching activity) ·Cl (load capacitance) depend on the implementation. 

PT otal = PStatic + a · Cl · V 2 · 1/T (4)Core 

PDynamic 
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We can compute the energy required to hash a message of N blocks using (5) where A = a · clk is the total 
switching activity. 

· T · clk · V 2 (5)EN = PStatic + A · Cl Core \ \ 
EStatic EDynamic 

For long messages we can compute energy per bit as 

EN l + p
EnergyP erBit = = · PStatic · T + a · Cl · V 2 (6)Core b · N b 

3 Implementations 

We implemented two versions of each algorithm, one which utilizes only logic resources (Logic version) 
and one that additionally utilizes a single Block RAM (BRAM version). The throughput formulae for all 
implementations are shown in Table 1. 

3.1 BLAKE 

Figure 3: Block Diagram of BLAKE (BRAM) 

Our implementations of BLAKE-256 are similar to the ones presented in [2, 8]. Our BRAM version (Fig. 3) 
stores the message, constants, initial and chaining hash values along with salt and a 64 bit counter value in 
BRAM. Loading the message through our 16-bit interface into BRAM takes 32 clock cycles. BLAKE-256 has 
3 functions namely initialization, round and finalization. The initialization takes 16 clock cycles to produce 
the internal state (V-state), which we store in four Distributed RAMs. The round function consists of 8 
almost identical G-Functions which operate on the internal V-state. We implemented 1/2 G-Function with 
quasi-pipelined stages and reorganized the G-Functions to avoid data conflicts (pipeline stalls). This results 
in a total of 16 clock cycles for one round. At the end of 14 rounds we require 2 extra clock cycles to empty 
the pipeline. In total it takes 14 · 16 + 2 = 226 clock cycles for the compression function. The G-Function 
requires permuted values of constants and message which are stored in BRAM. This permutation doesn’t 
have a repeatable pattern, therefore the addressing of the message and constants for 14 rounds consumes 
70% of the size of the controller. The finalization is again producing an intermediate hash output using the 
V-state and the chaining hash value. This requires 16 clock cycles. The total number of clock cycles to 
process on message block is therefore 32 + 16 + 226 + 16 = 290 clock cycles. 

The Logic version replaces the BRAM with two Distributed RAMs. One Distributed RAM stores message 
and the initial hash values, the other stores the constants, salt, and counter and chaining hash values. We 
introduced a register after each DRAM in order to match the BRAM version. This version therefore takes 
the same number of clock cycles as the BRAM version. The only change to the datapath shown in Fig. 3 
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is the change from one BRAM to two DRAMs. As the state was already stored in DRAM removing the 
BRAM did not yield additional optimization possibilities for BLAKE. 

3.2 Grøstl 
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Figure 4: Block Diagram of Grøstl (BRAM) 

Grøstl [19] is based on the AES round with the following sequence of operations: AddRoundConstant, 
SubBytes, ShiftBytes, and MixBytes. The implementation of our BRAM version (Fig. 4) uses one BRAM in 
dual port mode to store the initialization vector and the intermediate hash (h). It stores the state, consisting 
of two 512-bit matrices P & Q in 16 4x8 Distributed RAMs. Each row is stored in one Distributed RAM. 
In order to get the first 64-bit column we access byte0 from RAM0, byte1 from RAM1. . . etc. This access 
scheme performs the ShiftBytes operation with which we start each round. SubBytes is implemented using 4 
pipelined S-Boxes which are described as logic functions [20]. The multiplier takes a column from SubBytes 
and produces 32 bits of the new column in one clock cycle, the remaining 32 bits in the second clock cycle. It 
takes a total 3 clock cycles to produce a new column. Each round of P and Q computes 16 new columns which 
takes 48 clock cycles. We interleave the computations of P and Q through the pipeline. The XOR operation 
(P E Q E h) takes 32 clock cycles. So a block of message is processed in 515 clock cycles (48 · 10 + 32 + 3 
clock cycles to fill the pipeline). 

Our Logic version is primarily based on the BRAM version described above. Replacing the BRAM by 
Distributed RAM increases the area only marginally as the BRAM only stored the initialization vector and 
the intermediate hash. The new area budget allows us to implement a full Galois field multiplier which can 
produce a 64-bit column in one clock cycle. It now takes only a total of 2 clock cycles to produce a new 
column. Therefore, computing a round of P and Q takes now only 32 clock cycles. The total number of 
clock cycles to process one block of message are 357 clock cycles (32 · 10 + 32 + 5 clock cycles to fill the 
pipeline). 

3.3 JH 

Our implementation of JH in the Logic version (Fig. 5) uses two single port 32x32 bit Distributed RAMs 
to store the initial and chaining hash values. Two pair of dual port Distributed RAMs are used to store 
the state and constants generated for each round. The initial round constants are stored in a ROM and the 
Distributed RAMs are loaded with the constants for each new message. The message is stored in a single 
port 32x16 bit Distributed RAM. The initial and chaining hash values are always stored in grouped format 
to avoid the grouping and ungrouping for each message block [7]. The grouped initial/chaining hash value is 
XORed with the message for each message block and stored in two dual port Distributed RAMs. This takes 
64 clock cycles. The E8 function operates on two 32-bit words that are read out from the two Distributed 
RAMs. It takes 16 clock cycles to process each round. As we are using read and write addresses for dual 
port Distributed Ram, the addressing is repeated after 4 rounds for one Distributed RAM and after 8 rounds 
for the other Distributed RAM which minimizes the size of the controller. After 42 rounds the computed 
state is XORed with the message again and the final/chaining hash value is stored back into two single port 
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Figure 5: Block Diagram of JH (BRAM) 

Distributed RAMs for the next message block. This XORing takes another 64 clock cycles. In total it takes 
64+16*42+64 800 clock cycles for each message block. 

In our BRAM version we replaced the two single port 32x32 bit Distributed RAMs by a dual port 
BRAM which is the only change to the datapath shown in Fig. 5. This dual port BRAM stores the initial 
and chaining hash values. As we are replacing the Distributed RAMs with BRAM it takes one extra clock 
cycle to start the BRAM and load the Distributed RAMs which store the internal state. As the state was 
already stored in DRAM removing the BRAM did not yield additional optimization possibilities for JH. 

3.4 Keccak 
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Figure 6: Block Diagram of Keccak 

One round of Keccak [21] applies five functions, e, θ, α, π, and � to its state. In the BRAM version 
of our implementation of Keccak (Fig. 6), we store the state and the round constant in BRAM. The basic 
operations of Keccak use 64-bit data values which is also the maximum that we can read or write to BRAM 
in a single clock cycle. Therefore, in order to make the design more efficient we decided to quasi pipeline our 
functions. We have merged the e and θ functions. The later function uses a variable rotator. A barrel shifter 
consumes 192 slices on Spartan-3, hence we build a shifter that can only shift the 25 offsets Keccak needs. It 
uses on average 1.5 clock cycles per rotation and consumes only 128 slices. We use dedicated write cycles to 
accommodate the data rearrangement of the α function. These three functions take a total of 91 clock cycles. 
The π function takes its operands from BRAM, applies a series of simple logical operations, and stores the 
result into BRAM. The � operation combines a round constant with one 64-bit value of the new state. These 
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operations take an additional 63 clock cycles. A single round operation takes a total of 91 + 63 = 154 clock 
Thus 3696 clock cycles are required to process one block of message. The reason for such a large 

number of clock cycles for this algorithm is that each state of a function has a dependency on the previous 
states and functions which limits how far the implementation can be quasi pipelined. Furthermore, the 
restriction on the amount of data that can be written and read from the BRAM during a single clock cycle 
makes it difficult to increase the throughput. 

Our Logic version splits the BRAM into four single port Distributed RAMs of 16-bits each to store the 
initial state. The round constants can be easily stored in a ROM. The order of scheduling the operations and 
almost all the functions are implemented in the same manner as in the BRAM version with minor tweaks. 
We now have four registers (A through D) instead of three at the output of the DRAM‘s to compute the 

The output for the θ and α is now stored in an additional 64-bit single port Distributed RAM. 
This de-couples reading from the writing which eliminates address contention. This allows us to remove the 
dedicated write cycles we used in the BRAM version. The θ , α and e stages are now computed in 58 clock 
cycles, while the π and stages take another 39 clock cycles. Overall one round is processed in 97 clock 
cycles while one block is computed in 2328 clock cycles. 
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Figure 7: Block Diagram of Skein 

Unfortunately, we could not use a 32-bit datapath for our Logic implementation version (7b). Replacing 
the dual-port BRAM with a Distributed RAM requires 2 dual-port 48x32 Distributed RAMs which will 
consume a total of 356 slices. A 64-bit datapath on the other hand allows us to use a single-port 48x64 
Distributed RAM which consumes only 162 slices on a Spartan-3 FPGA. However, this reduction in area 
comes at the price of a slight increase in the critical path due to the 64-bit adder. We analyzed the throughput 
over area ratio of both, 32-bit and 64-bit datapath options, and came to the conclusion that for our Logic 
version a 64-bit datapath yields better results. The mix operation consists of a 64-bit addition and an XOR 
operation along with a rotation. Even on the 64-bit datapath, using the mix operation 4-times per round 
takes 20 clock cycles. Key injections take 47 clock cycles (48 for the first) however the permutations are 
faster at only 32 clock cycles instead of 109 for the 32-bit datapath. This results in a total of 2366 clock 
cycles per message block plus 32 clock cycles for loading the block. 

3.6 SHA-2 

The SHA-256 uses six logical functions Ch, Maj, �0, Sigma1, sigma0, and sigma1. Each of these functions 
operates on 32-bit words resulting in a new 32-bit words. These six functions are used in one of the three 
processing steps. The first processing step is message expansion where a 512-bit message block is expanded 
into 2048-bit message using two functions ι0 and ι1. The second processing step is round operation which 
uses eight working variables a, b, .., h. These eight working variables are initialized with initial hash values 
and updated using 2048-bit message, sixty four 32-bit round constants and four functions �0, �1, Ch and 
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The final step is intermediate hash generation where the eight working variables are added with initial 
hash values to obtain new intermediate hash values. 
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Figure 8: Block Diagram of SHA-2 

Our implementation of SHA-256 with BRAM uses it in Dual-port mode to store message, working 
variables, round constants, initial and final hash values (8a). The datapath is quasi-pipelined to reduce 
the critical time and clock cycles. Most of the pipeline registers except R1, R2 and R3 does not cost any 
additional area. The initialization of the working variables and intermediate hash values is performed while 
loading of message. Due to BRAM contention, message expansion takes 99 clock cycles while the round 
operation takes 448 clock cycles. 

In the logic only version, the BRAM is replaced with three DRAMs and six registers (8b). The message, 
round constants and hash values are stored in DRAMs, the working variables in registers. Using registers 
for working variables reduces the required clock cycles for round operation to 192 clock cycles. The number 
of clock cycles for message expansion increases to 196 clock cyles due to use of single port DRAM. Using 
a dual-port DRAM can reduce the clock cyles but would increase area significantly. Using approximately 
additional 100 slices, the throughput can be doubled but it would violate the area constraint. 

4 Results and Conclusions 

4.1 Implementation Results 

The results of our implementations are summarized by the graph shown in Fig. 9. It shows the area con­
sumption of each implementation on the x-axis and the throughput on the y-axis. It can be seen that all 
implementations with BRAM (blue squares) fall within our narrow target range of 450 to 650 slices. Within 
this area constraint each algorithm was optimized for maximum throughput. All Logic only implementations 
(red diamonds) are below the maximum target of 768 slices, however Grøstl, Keccak and Skein use almost 
100% of all logic resources. JH42 is still more than 200 slices smaller and BLAKE-256 more than 150 slices 
smaller than the maximum. Unfortunately, neither algorithm can take advantage of the additional area to 
increase their throughput. In fact, it would reduce their throughput over area ratio. Only Grøstl, SHA-2, 
and Keccack show an improved throughput when implemented without BRAM but with more area for logic. 
For the others, the throughput remained almost the same and for JH42 the throughput actually decreased. 

The performance results of each implementation on a Xilinx Spartan-3 device is shown in Fig. 10. In each 
graph the order of the algorithm is sorted by best to worst performer. The top three graphs show results 
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Table 1: Throughput formulae for our implementations of SHA-3 candidates 
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d
d
it
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o
ck

 C
y
c

N blocks 
clk = b 

Algorithm B
l

C
l

C
l

st + ( l + p) · N + end (l + p) · T 

BLAKE-256 [22] 512 14 16 34 2 + ( 32 + 258) · N + 17 512/( 290 · T ) 
Grøstl [19] 512 10 48 35 2 + ( 32 + 515) · N + 532 512/( 547 · T )

M
 

JH42A [23] 512 42 16 65 2 + ( 64 + 737) · N + 33 512/( 801 · T ) 

B
R Keccak [21] 1088 24 154 0 2 + ( 68 + 3696) · N + 17 1088/(3764 · T ) 

Skein [24] 512 72 20 967 5 + ( 32 + 2407) · N + 2362 512/(2439 · T ) 
SHA-2 [24] 512 64 7 115 2 + ( 32 + 563) · N + 17 512/( 595 · T ) 

BLAKE-256 [22] 512 14 16 34 2 + ( 32 + 258) · N + 17 512/( 290 · T ) 
Grøstl [19] 512 10 32 37 2 + ( 32 + 357) · N + 374 512/( 389 · T )

L
o
g
ic

 o
n
ly

 

JH42 [23] 512 42 16 64 2 + ( 64 + 736) · N + 32 512/( 800 · T ) 
Keccak [21] 1088 24 97 0 2 + ( 68 + 2328) · N + 17 1088/(2396 · T ) 
Skein [24] 512 72 20 926 5 + ( 32 + 2366) · N + 2319 512/(2398 · T ) 

SHA-2 [24] 512 64 3 212 2 + ( 32 + 404) · N + 17 512/( 436 · T ) 

Figure 9: Throughput over area of our SHA-3 implementations on Xilinx Spartan-3 

for the implementations with BRAM, the bottom three for Logic only implementations. The first graphs 
(Fig. 10a, Fig. 10d) show the throughput over area ratio of each implementation for long messages (red) 
and for short messages (light blue). It can clearly be seen, that algorithms that have a lengthy finalization 
step (Grøstl, Skein) or require an additional block just for padding (JH42) do not perform as well for short 
messages as for long messages. Only BLAKE-256 and Grøstl (for long messages) perform better than SHA-2. 
The order of the algorithms does not change between BRAM and Logic only implementations. 

The next pair of graphs (Fig. 10b, Fig. 10e) shows the power consumption of each implementation which 
we measured on a Xilinx-3E FGPA. As expected, the static power consumption (red) is the same for all 
implementations as it depends only on the device, and not on how the device is configured. What is 
unique to each implementation is the dynamic power consumption (light blue). Skein and Keccak have a 
lower power consumption than SHA-2, but only for the BRAM implementations. The most power efficient 
implementations are SHA-2 (BRAM) and Keccak (BRAM). This picture changes dramatically when we look 
at the energy efficiency measured in Energy/bit (Fig. 10c, Fig. 10f). Again BLAKE-256, SHA-2 and Grøstl 
are leading. Skein has the worst energy efficiency. 
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(c) Energy/bit (BRAM) 

(d) Throughput/Area (Logic) (e) Power Consumption (Logic) (f) Energy/bit (Logic) 

Figure 10: Performance Results for Lightweight Implementations of SHA-3 Candidates on Spartan-3 

4.2 Implementation Shootout 

Due to the multitude of results we generated it is difficult to determine a clear winner. The following 
tables 2 and 3 summarize the most important results. In each category they show how much different an 
algorithm performs as compared to SHA-2. Results that are better than SHA-2 are highlighted. Table 2 
compares throughput over area, power and energy results on our target device Spartan-3. Table 3 compares 
only throughput over area results but accross all FPGA families for which we generated results. The only 
algorithm that is consistently better than SHA-2 is BLAKE-256 followed by Grøstl. The detailed results 
of our implementations on Xilinx Spartan-3 and on Spartan-6, Virtex-5, Virtex-6, and Altera Cyclone-II 
devices are summarized in the Appendix in Tables 6 and 5. 

4.3 Comparison with Other Reported Results 

We compare our results with previously reported ones by Kerckhof et al. [7] and Jungk et al. [8].Even though 
our primary design target is Xilinx Spartan-3, we synthesized our implementations for other devices to match 
the devices of reported results. This puts our designs at a disadvantage as we could not take full advantage of 
their features. Most notably, pipeline stages might become unbalanced when synthesizing a design for a device 
with 4-input LUTs on a 6-input LUT device. Figure 11 compares our results with results from Kerckhof 
et al. [7]. Our implementations with BRAM are indicated through blue squares, Logic only through red 
diamonds and Kerckhof’s through yellow triangles. Even though the area range of our implementations was 
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Table 2: Shootout of Spartan-3 Implementations relative to SHA-2 
TP/A: Throughput/Area 

Algorithm 

BRAM 

TP/A 
Large Small P

ow
er

E
n
er
g
y

/b
it

Logic Only 

TP/A 
Large Small P

ow
er

E
n
er
g
y

/b
it

 

BLAKE-256 2.15 2.08 1.07 0.52 1.85 1.81 2.09 
1.89 
2.15 
1.09 
1.63 
1.00 

1.08 
1.35 
3.04 
2.71 
7.50 
1.00 

Grøstl 1.11 0.58 1.07 0.98 1.36 0.72 
0.32 
0.34 
0.06 
1.00 

JH42 0.75 0.38 1.09 1.47 
2.65 
2.98 
1.00 

0.62 
0.33 
0.12 
1.00 

Keccak 0.28 0.29 0.89 
Skein 0.21 0.11 0.73 
SHA-2 1.00 1.00 1.00 

Table 3: Implementation Shootout, Throughput over Area relative to SHA-2 
L: Large Message, S: Small Message 

Algorithm 
Spartan-3 
L S 

Xilinx 
Spartan-6 Virtex-5 
L S L S 

Virtex-6 
L S 

Altera 
Cyclone-II 
L S 

BLAKE-256 
Grøstl 
JH42 
Keccak 
Skein 

B
R
A
M

 

SHA-2 

2.15 2.08 1.99 1.93 1.80 1.74 2.06 2.00 2.06 1.99 
1.11 0.58 

0.38 
0.29 
0.11 
1.00 

0.69 
0.54 
0.43 
0.15 
1.00 

0.36 
0.27 
0.44 
0.08 
1.00 

1.02 0.54 
0.51 
0.50 
0.10 
1.00 

0.92 
0.76 
0.56 
0.16 
1.00 

0.48 
0.39 
0.58 
0.09 
1.00 

1.95 1.02 
0.75 
0.28 
0.21 
1.00 

1.01 1.06 0.54 
0.86 
0.19 
1.00 

0.49 
0.18 
1.00 

0.84 
0.36 
1.00 

BLAKE-256 
Grøstl 
JH42 
Keccak 
Skein L

og
ic

 o
n
ly

 

SHA-2 

1.85 1.81 2.24 2.19 1.86 1.82 2.24 2.19 3.76 3.69 
1.36 0.72 

0.32 
0.34 
0.06 
1.00 

1.43 0.76 
0.38 
0.93 
0.08 
1.00 

1.50 0.80 
0.50 
0.50 
0.09 
1.00 

1.41 0.75 
0.38 

1.93 1.02 
0.62 
0.33 
0.12 
1.00 

0.74 
0.90 
0.14 
1.00 

0.99 
0.48 
0.17 
1.00 

0.74 0.37 
0.27 
0.07 
1.00 

0.19 
0.28 
0.04 
1.00 

1.00 1.04 
0.17 
1.00 

0.09 
1.00 

560 slices ±65, i.e. with a variability of less than ±12% on Spartan-3 for BRAM implementations, and 660 
±16% for logic only implementations our results show a large variability on Spartan-6. Kerckhof’s designs 
occupy a similar range of sizes. The graph in Fig. 12 is more interesting in that the results from Jungk et al. 
occupy a different area than ours and with the exception of Skein, all their designs are in a tight area, just 
like ours. The data in Fig. 12 is newer than [8] and was obtained from the ATHENa database [11]. Figure 12 
illustrates nicely how non linearly the throughput increases with an increase in available area. 

4.4 Conclusions 

In this paper we presented two sets of lightweight FPGA implementations of all SHA-3 finalists and SHA-2. 
All algorithms were implemented using the same assumptions, goals, tools, interface, and the same area 
optimization techniques and their power consumption were measured. The lightweight implementations 
were evaluated with regards to their throughput over area ratio and energy per bit. The resulting ranking of 
algorithms is very different from implementations for best throughput over area reported in the literature [25], 
[14], [26]. The finalists with the best throughput over area ratio and with the least energy per bit on Xilinx 
devices are BLAKE-256 followed by Grøstl. 

13 



� �� ��� ��� ��� ��� ���
�

���

���

���

���

���

���

���

	��


��

��
������

������

����

������ �����

��
������
������

����
������

�����

��
������ �!

������ �!

���� �!

������ �!
����� �!

�"
#

�$%��

�����&$'


���( ������!

)
&
�$

*
%
&
+
*
�(
 #

,
+
�
!

Figure 11: Throughput over area comparison with Kerckhof et al. on Virtex-6 
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Figure 12: Throughput over area comparison with Jungk et al. on Virtex-5 
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Appendix 

Table 4: Power Measurements on Spartan-3E 

Algorithm 
PStatic 

[mW] 
PDynamic 

[mW] 
PT otal 

[mW] 
Energy/bit 

nJ/bit 
BLAKE-256 
Grøstl 
JH42 
Keccak 
Skein 

B
R
A
M

 

SHA-2 

11.3 
11.4 
11.3 
11.3 
11.3 
11.4 

30.6 
30.5 
31.5 
23.7 
17.3 
27.9 

41.9 
41.9 
42.8 
35.0 
28.6 
39.3 

0.475 
0.895 
1.339 
2.422 
2.725 
0.913 

BLAKE-256 
Grøstl 
JH42 
Keccak 
Skein L

og
ic

 o
n
ly

 

SHA-2 

11.3 
11.3 
11.3 
11.3 
11.4 
11.3 

31.6 
28.5 
32.5 
16.4 
24.6 
15.1 

42.9 
39.8 
43.8 
27.7 
36.0 
26.4 

0.486 
0.605 
1.369 
1.220 
3.372 
0.450 

Table 5: Implementation results of our implementations of SHA-3 candidates 

Message 

E
s)

m
T

Long 

h
p
u
t

a sl
ic
e)

Short 

h
p
u
t

a sl
ic
e)

 

D
ev
ic
e

V
er
si
o
n

Algorithm A
re
a

 (
L

M
em

o
ry

B
it
s

M
a
x
im

u n
s)

 
D
el
ay

 (

T
h
ro
u
g

(M
b
p
s)

T
P
/
A
re

(M
b
p
s/

T
h
ro
u
g

(M
b
p
s)

T
P
/
A
re

(M
b
p
s/

BLAKE-256

c6
) 1,367 2,048 9.98 176.9 0.13 166.0 0.121 

Grøstl5
6 1,221 3,072 6.26 149.6 0.12 75.7 0.062

M
 

JH428
f2 A 1,045 3,840 9.15 69.9 0.07 34.2 0.033 

B
R Keccak2
c 996 8,192 5.48 52.7 0.05 52.5 0.053 

Skein (e
p 930 4,096 9.89 21.2 0.02 10.8 0.012 

SHA-2II
 1,195 8,192 11.45 75.1 0.06 72.8 0.061 

BLAKE-256n
e 2,019 0 7.39 238.8 0.12 224.1 0.111 

o
n
ly Grøstlcl
o 3,937 0 5.52 238.4 0.06 121.2 0.031 
JH42 5,527 0 10.05 63.7 0.01 31.2 0.006

A
lt
er
a

 C
y

L
o
g
ic Keccak 6,247 0 8.49 53.5 0.01 53.1 0.008 

Skein 6,141 0 15.83 13.5 0.001 6.8 0.001 
SHA-2 4,705 0 7.94 147.9 0.03 141.7 0.030 
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Table 6: Implementation results of our implementations of SHA-3 candidates 

Message 

D
ev
ic
e

V
er
si
o
n

Algorithm A
re
a

 (
sl
ic
es
)

B
lo
ck

 R
A
M
s

M
a
x
im

u
m

D
el
ay

 (
n
s)

 T

Long 

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

Sh

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

ort 

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

 

BLAKE-256 549 1 8.05 219.3 0.40 205.9 0.375 )

Grøstl-5 594 1 7.65 122.4 0.21 61.9 0.104
M

 
JH42s5

0

A 502 1 9.19 69.6 0.14 34.0 0.068 
B
R Keccakc3 627 1 8.90 32.5 0.05 32.3 0.052 

Skein (x 498 1 10.65 19.7 0.04 10.0 0.020 
SHA-2n

-3
 

547 1 8.48 101.5 0.19 98.4 0.180 
BLAKE-256rt

a 631 0 8.16 216.3 0.34 203.0 0.322 
Grøstl 766 0 6.83 192.6 0.25 97.9 0.128

X
il
in
x

 S
p
a

L
o
g
ic

 o
n
ly

 

JH42 558 0 10.05 63.7 0.11 31.2 0.056 
Keccak 766 0 9.83 46.2 0.06 45.8 0.060 
Skein 766 0 12.83 16.6 0.02 8.5 0.011 

SHA-2 745 0 8.52 137.8 0.19 132.1 0.177 

BLAKE-256 152 1 5.63 313.8 2.06 294.5 1.938-3
)

Grøstlsg 271 1 4.80 195.0 0.72 98.7 0.364

M
 

JH42x
4
c

A 182 1 6.23 102.6 0.56 50.2 0.276 

B
R Keccak6
sl 127 1 5.07 57.0 0.45 56.8 0.447 

Skein x
c 182 1 7.19 29.2 0.16 14.8 0.081 

SHA-26
 ( 140 1 5.93 145.2 1.04 140.7 1.005 

BLAKE-256a
n
­

164 0 5.34 330.6 2.02 310.2 1.882 
Grøstl

a
rt 230 0 4.43 297.3 1.29 151.2 0.657

L
o
g
ic

 o
n
ly

 

JH42 156 0 6.14 104.2 0.67 51.0 0.327

X
il
in
x

 S
p

Keccak 113 0 4.95 91.8 0.81 91.1 0.806 
Skein 190 0 8.77 24.3 0.13 12.4 0.065 

SHA-2 227 0 5.74 204.6 0.90 196.0 0.864 

BLAKE-256) 248 1 4.29 411.9 1.66 386.6 1.559 
Grøstl0

-2 271 1 3.65 256.5 0.95 129.8 0.479

M
 

JH42x
2

A 176 1 3.91 163.5 0.93 80.0 0.454 

B
R Keccak5
v
l

159 1 4.04 71.6 0.45 71.3 0.448 
Skein x

c 218 1 5.69 36.9 0.17 18.7 0.086 
SHA-25

 ( 234 1 3.98 216.2 0.92 209.5 0.895 
BLAKE-256ex

­

271 0 3.94 448.2 1.65 420.7 1.552 
Grøstl 313 0 3.15 417.4 1.33 212.3 0.678

X
il
in
x

 V
ir
t

L
o
g
ic

 o
n
ly

 

JH42 183 0 3.99 160.3 0.88 78.5 0.429 
Keccak 275 0 3.85 118.1 0.43 117.2 0.426 
Skein 246 0 5.66 37.7 0.15 19.2 0.078 

SHA-2 312 0 4.24 277.0 0.89 265.4 0.851 

BLAKE-256 163 1 5.06 348.7 2.14 327.3 2.0081
)

Grøstl 241 1 4.09 229.1 0.95 115.9 0.481T
­

M
 

JH427
5

A 196 1 4.11 155.4 0.79 148.9 0.760 

B
R Keccakv
lx 129 1 3.84 75.2 0.58 74.9 0.580 

Skein 

x
c6 207 1 6.00 35.0 0.17 17.8 0.086 

SHA-2

6
 ( 155 1 4.84 177.8 1.15 172.3 1.111 

BLAKE-256x
­ 166 0 3.72 474.6 2.86 445.4 2.693 

Grøstl

V
ir
te 263 0 2.78 473.3 1.80 240.7 0.915

L
o
g
ic

 o
n
ly

 

JH42 171 0 3.96 161.5 0.94 154.9 0.906 
Keccakn

x
 

106 0 3.34 136.0 1.28 135.0 1.273 

X
il
i

Skein 193 0 5.17 41.3 0.21 21.0 0.109 
SHA-2 238 0 3.86 304.2 1.28 291.5 1.225 
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